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ANISOTROPIC TURBULENCE IN A FLOW OF INCOMPRES§IBLE FLUID BETWEEN
ROTATING COAXIAL CYLINDERS

V.A. BABKIN

The problem of developed turbulent flow of a viscous incompressible fluid
between circular coaxial cylinders (Couette flow) is solved. The inner
cylinder rotates with constant angular velocity, and the outer cylinder

is fixed. The region of flow is divided into two boundary layers adjacent
to the cylinders, and the kernel of the flow.

Experimental and theoretical studies have shown /1-4/ that the
turbulent flow of a Newtonian fluid near a rigid wall has a structure.

The structure consists of an ordered system of boundary vortices which
determine, at every point of the stream, a characteristic direction, and
at the rigid wall itself the vortices are directed along the streamline.
Therefore, the turbulent fluid in the boundary region must be treated as
anisotropic /5, 6/ and in /6/ it is assumed that the viscous anisotropy

of a turbulent fluid is analogous to the anisotropy of liquid crystals.

It was shown in /7/ that the turbulent flow of a Newtonian fluid near a
plane wall can, in fact, be described within the framework of the Ericksen-
Leslie model /8, 9/ of an oriented fluid, provided that certain additional
conditions can be imposed on the defining constants of the model.

In the present paper the turbulent fluid in the boundary regions is
regarded as an oriented fluid /7/ and as a viscous fluid with a turbulent
viscosity that is constant over the transverse cross~section at the
kernel. Unlike existing solutions** (**Dorfman L.A. Hydrodynamic Resistance
and Heat Output in Rotating Bodies. Moscow, Fizmatgiz, 1960; Novozhilov
V.V. On solving a developed turbulent flow between two coaxial rotating
cylinders. Preprint 178, Inst. Problem Mekhaniki, Akad Nauk SSSR, 198l.) the
model remains unchanged when changing from the flow between two parallel
walls to the flow between rotating cylinders. The solution obtained shows
good agreement with experimental data /10/.

Let the space between two infinite smooth coaxial cylinders be filled with an incom-
pressible Newtonian fluid. In order to make comparisons with experimental results /10/ easier,
we shall assume that the inner cylinder (of radius R,) rotates with constant angular velocity
o,, and the outer cylinder (of radius Ry)is fixed.

We shall use the cylindrical coordinate system r, 9, . The z axis will be directed
along the common axis of the cylinders, and the angle ¢ will be measured from the direction
of rotation of the inner cylinder.

Let the velocity of this rotation be such that the flow of fluid between the cylinders
is developed and turbulent. In accordance with the data of /1-4/ we shall divide the region
of flow R, r<(HR; into three subregions: 1 — (B,<r<{n), 2— (< r<{R) are the regions
of boundary turbulence and 3 — (r, r<{r;) is the kernel of the flow. In regions 1 and 2
the turbulent fluid has a structure formed by the boundary vortices, and region 3 is regarded
as a zone of free turbulence. Since the concept of laminar sublayer is not used in the
present paper, the boundaries of the regions 1 and 2 are given without taking into account
the thickness of the laminar sublayer at the rigid walls.

We shall seek the velocity distribution separately in each case. 1In the boundary regions
1l and 2 we shall consider the turbulent fluid as an oriented fluid whose kinematic state at
every point is characterized by an averaged velocity v (v, Vg, ¥;) and unit orientation vector
n (ny, ng, nx).

When the forces of gravity are neglected and the symmetry of the flow is taken into
account, we have p = p (r) and

Uy =0y =0, vg =v(r) = re (r) (1)
n, =sin 0 (r), np = cos 0 (r), n, =0
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where p is the averaged pressure, 0 is the angle between the orientation vector and the stream

line and ® (r) is an unknown function.
Under the assumptions made, the equations of the Ericksen-Leslie model, when they do

not become an identity, have the form /9/

do 1 dp
'T;L+'r_(0rr_°¢‘v)_T+prw2:0 (2)
do 1
T+ (Ggr + 07) =0
g, 1 -
T"‘T(P’rr_p‘iw)”*'gr'*‘plm sin@=0 (3)
dp 1
d‘:r + —(kor + Brg) + go + Py cos 8 =0
Here is the density, 0y are the stresses, @; is a constant characterizing the inertia
P .

associated with the rotation of the oriented vector, and Wy, g (€ £y g:) are the stresses and
the internal volume force responsible for the change in the direction of the orientation

vector.
Taking into account relations (1) and the conditions imposed on the Ericksen-Leslie

model in /7/, we can write the defining relations for the quantities appearing in Egs. (2) and
(3) in the form

Opp = (py 8in? © 4 pg)ro’ sin 0 cos 6 ()
Opp = (M c0s® 8 + p;)re’ sin O cos 6

Grp = Gy, = (p, sin® 0 cos? O + peyra’

Ppr = —Pgp = D sin 0 cos O (5)
Pro = —Dsin? 6, pg, = O cos? 6

p0=.}l‘iz'_”‘5_, (D=k2,( cofe —sinOZ—?-)

& =8 =0

where W, Py, M5 Kgg are the constants of the Ericksen-Leslie model and ®' is the derivative

with respect to r.
If we substitute formulas (5) into (3), the latter are transformed into a single equation

for the angle 0O

. d20 . de \2
smecosBd—r,-+ (cos®8 — 2sin%0) ('Tr ) + (6)
5ginBcosB do cos? 6 [
7 T T AT T T @0

Eq. (6) itself is fairly complicated, and is also connected with (2). In order to simplify
the problem, we shall make the following assumptions: the inertial effects connected with the

rotation of the orientation vector are small and therefore p,w® =0; and the angle 0 is
small, so that sin® =6, cos & = 1,
Then Eq. (6) becomes
d%0 do \2 50 do 1 -
v+ (&) + T =0 @

The boundary conditions are formulated separately for regions 1 and 2:
6(R)=0,0(r;)=86;,i=1,2 (8)

where 0, and 0, are the values of the angle 0 at the boundaries of the flow kernel.
The respective solutions of Eg.(7) with boundary conditions (8) are:

®)

. R .
207 — (— 1)i+1 4, (1—TF) +lng

283 —1n(r,/R,)]
A= (—1)nt :‘i‘—R,‘! i

The solutions become simple near the rigid walls, when |1 — r/R; | L1,

2 (__ )i+l I _ —_ (= i —
0 =(— g (G —1], a=24+—, i=12 (10)
i

The constants @, and @, must obviously be positive. The first equation of (2) is used
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to find p = p (r). Integrating the second equation of (2) under the condition that Oy, == @
(see Egs.(4)), we obtain the distribution of tangential stresses in regions 1 and 2

Ogp == — T R212, i =1, 2 (11)

e

where Ty,; 1s the modulus of tangential stress at the wall.
The third equation of (4), within the approximation used, has the form

G¢r = (10% + po)ro’ (12)

Equating the right-hand sides of Egs.(ll) and (12) we obtain equations for determining
o (r) in the boundary regions

A,
(“192‘*‘!‘0)":—?':_L’ i=1,2 (13)

r2

Integrating Egs.(13) in which 6% is given by (10), we obtain the velocity profiles v = or
in regions 1 and 2

r r
v:Blr—Kl{(al_l)s I + (14)
Ry R
[CTEE 2(0&1-—1)r:I
1) Ry —
R, Rg?
e R T
T .
Ki= e, %= aa;

Here B, and B, are the constants of integration of (13) determined, respectively, from
the boundary conditions o (R,)=0,, 0(R,)=0:

o Iney 1 1

B1 — Wy K1 [ (ay — 1)® - (or — 1) + 2(a1—1)] (15)
_ In o, 1 2

B—— & [ @i + Gy + 2ery )

The product p;6* in (12) characterizes the viscous properties of the turbulent fluid
governed by its vortex structure, therefore the quantity p,0° can be regarded as the turbulent
viscosity. Then we shall have to regard the constant pg, irrespective of the inclination
of the boundary vortices, as the molecular viscosity. If we assume, as was done in the theory
of boundary turbulence /11/, that py =0, then for a; =0 Egs.(14) will yield the follow-
ing velocity profiles in regions 1 and 2:

; R, ' R, ;
v=Byr + (— 1) K,[rln 1— 2 +Ri(1+-2—r—)],, i=1,2 (16)
When a; = 0, formulas (15) become meaningless and we must either formulate different

boundary conditions for determining the constants B, and B, or regard the constants B, and
B, are empirical,

If we regard the kernel of the flow r {7 < 7" as a region of free turbulence with
constant turbulent viscosity, then in this case the velocity profile will have the form /11l/

v=Mr+ Nir (17)

where M and N are constants independent of the turbulent viscosity and determined from the
condition that the velocity is continuous at r=r; and r = r,

Below we compare the values at velocity v given by formulas (16) and (17) with the

experimental values of velocity given in /10/, in the form of a table (the fluid in question
is air, and the radii of the cylinders are R; =106 mm and R, =155mm:

r— Ry, mm 1 3 5 10 25 40 45 47
@ — 178 sec™1

v,m/sec.calc.10.15 9.08 8.69 8.
experimental 10,13 9.10 8.70 8.
o = 283 sec™1

v,m/sec.calc. 16.10 14,61 14.08 13.44 11.96 10.80 10.51 10.12
experimental 16.05 14.60 14.05 13.27 11.95 10.87 10,50 10.10

7.47

9 6 66 6.4
4 7.56 6.

2 6.
2 6.67 6.50

s

Calculations using formulas (16) and (17) were carried out for the following values of
the parameters: B, = 59.6 sec, By = 49.7 sec, K, = 11.0 sec, K, = 2,11 sec, M = 4,58 sec, and
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N =090 m2/sec for w; = 178 sec, and B, = 100 sec, B,= 1793 sec, K,;=15.7 sec, K,= 4,71 sec,
M =217 sec and N =153 m3/sec for ;=283 sec. In both cases we adopted the value r —
Ry = Ry — ry = 7Tmm. The computed and experimental data show good agreement with each other.

It was also found in /10/ that the values of the dimensionless velocity # = v/oR; can be
found, for any ©;, on a single graph 7 =17 (}), where &= (— R)/(R; — R;). We shall show that
the results of this paper also agree with this conclusion.

Let us write B; and K; in the form

By = Biwy, Ky = wo, (18)
where B; and % (i=1,2) are dimensionless quantities.

Using the dimensionless quantities 7 and &, we rewrite Egs.(16) as follows:

3
5= Bu(t+ 80— [+ 80 g+ 2y + (19)
= 1—-8h —
v=ﬁz(1+ih)+xn[(1+£h)ln(77r%+(1+h)(1+ §_1(1_-|-E)E,_:)>]

h = (Ry — R)/R,

The values of §; and %;, obtained using the values of B; and K;, given above, are given in
the table. The quantities B; and x;, can obviously be regarded as constants, and in this case
Egs. (19) will represent the functions # =75 (§) independent of a,

ﬁ)nSeC_':L By My By Ky
178 0.33 0.062 0.28 0.015
283 0.35 0,055 0.28 0.017

Since the constants M, N in Eq.(l7) can be expressed in terms of B; and X; ina linear
manner, it follows that formula (17) written in terms of % and §, also represents the function
7 =7 () independent of @,. But in this case # is independent of o, over the whole of the
segment R; <r < R,.

The author thanks V.N. Nikolayevskii for valuable comments and advice.
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