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ANISOTROPIC TURBULENCE IN A FLOW OF INCOMPRESSIBLE FLUID BETWEEN 
ROTATING COAXIAL CYLINDERS* 

V.A. BABKIN 

The problem of developed turbulent flow of a viscous incompressible fluid 
between circular coaxial cylinders (Couette flow) is solved. The inner 
cylinder rotates with constant angular velocity, and the outer cylinder 
is fixed. The region of flow is divided into two boundary layers adjacent 
to the cylinders, and the kernel of the flow. 

Experimental and theoretical studies have shown /l-4/ that the 
turbulent flow of a Newtonian fluid near a rigid wall has a structure. 
The structure consists of an ordered system of boundary vortices which 
determine, at every point of the stream, a characteristic direction, and 
at the rigid wall itself the vortices are directed along the streamline. 
Therefore, the turbulent fluid in the boundary region must be treated as 
anisotropic 15, 6/ and in /6/ it is assumed that the viscous anisotropy 
of a turbulent fluid is analogous to the anisotropy of liquid crystals. 
It was shown in /7/ that the turbulent flow of a Newtonian fluid near a 
plane wall can, in fact, be described within the framework of the Ericksen- 
Leslie model /8, 9/ of an oriented fluid, provided that certain additional 
conditions can be imposed on the defining constants of the model. 

In the present paper the turbulent fluid in the boundary regions is 
regarded as an oriented fluid /7/ and as a viscous fluid with a turbulent 
viscosity that is constant over the transverse cross-section at the 
kernel. Unlike existing solutions**(**Dorfman L.A. HydrodynamicResistance 
andHeatOutputinRotatingBodies. Moscow, Fizmatgiz, 1960; Novozhilov 
V.V. On solving a developed turbulent flow between two coaxial rotating 
cylinders. Preprint178, Inst. ProblemMekhaniki, AkadNaukSSSR, 1981.) the 
model remains unchanged when changing from the flow between two parallel 
walls to the flow between rotating cylinders. The solution obtained shows 
good agreement with experimental data /lo/. 

Let the space between two infinite smooth coaxial cylinders be filled with an incom- 
pressible Newtonian fluid. In order to make comparisonswithexperimentalresults /lo/ easier, 
we shall assume that the inner cylinder (of radius R,) rotates with constant angularvelocity 
ml, and the outer cylinder (of radius &)is fixed. 

We shall use the cylindrical coordinate system r, cp, 5. The x axis will be directed 
along the common axis of the cylinders, and the angle cp will be measured from the direction 
of rotation of the inner cylinder. 

Let the velocity of this rotation be such that the flow of fluid between the cylinders 
is developed and turbulent. In accordance with thedataof /l-4/ we shall divide the region 
of flow Rl<r<R, into three subregions: 1- (RI,< r < rl), 2 - (rZ< r< R,) are the regions 
of boundary turbulence and 3 -(rr< r< ~2) is the kernel of the flow. In regions 1 and 2 
the turbulent fluid has a structure formed by the boundary vortices, and region 3 is regarded 
as a zone of free turbulence. Since the concept of laminar sublayer is not used in the 
present paper, the boundaries of the regions 1 and 2 are given without taking into account 
the thickness of the laminar sublayer at the rigid walls. 

We shall seek the velocity distribution separately in each case. In the boundary regions 
1 and.2 we shall consider the turbulent fluid as an oriented fluid whose kinematic state at 
every point is characterized by an averaged velocity ‘v(v,,v~,v,) and unit orientation vector 
* (n,, n,, n,). 

When the forces of gravity are neglected and the symmetry of the flow is taken into 
account, we have p = p(r) and 

v, = v, = 0, v, = v(r) = ?%I (r) (1) 
n, = sin 8 (r), nw = co9 0 (F), n, = 0 
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where p is the averaged pressure, 0 is the angle between the orientation vector and the stream 
line and o(r) is an unknown function. 

Under the assumptions made, the equations of the Ericksen-Leslie model, when they do 
not become an identity, have the form /9/ 

Here p is the density, ukl are the stresses, p1 is a constant characterizingtheinertia 
associated with the rotation of the oriented vector, and pRl, g (g,,g,, g,) are the stresses and 
the internal volume force responsible for the change in the direction of the orientation 
vector. 

Taking into account relations (1) and the conditions imposed on the Ericksen-Leslie 
model in /7/, we can write the defining relations for the quantities appearing in Eqs.(Z) and 
(3) in the form 

u rr = (pl sin2 8 + ~,)ro'sin 8 cos e 

ugo = (pl ~09 e + p&o’ sin 8 cos 8 

arm = uqPr = (pl sin2 e co9 8 + pO)rw’ 

PLY). = -pve = cP sin e cos e 

prq = -@ sin2 8, par = @ co? e 

pLO=L?eLr 

g, = gV "= 0 

cb=kLI(+-sinO$-) 

(4) 

.(5) 

where pll IL par ha are the constants of the Ericksen-Leslie model and 0' is the derivative 
with respect to r. 

If we substitute formulas (5) into (3), the latter are transformed into a single equation 
for the angle 0 

sin ecos e $. -+ (~09 e - 2 sinSO) (-$ )' + 

Eq.(6) itself is fairly complicated, and is also connected with (2). In order to simplify 
the problem, we shall make the following assumptions: the inertial effects connected with the 
rotation of the orientation vector are small and therefore plma = 0; and the angle 6 is 
small, SO that sine = 8, cos 8 = 1. 

Then Eq.(6) becomes 

The boundary conditions are formulated separately for regions 1 and 2: 

8 (R,) = 0, e (Q) = et, i = 1, 2 

where 8, and fIs are the values of the angle 8 at the boundaries 
The respective solutions of Eq.(7) with boundary conditions 

(8) 
of the flow kernel. 
(8) are: 

(9) 

&=(--l)'+l 
rta[28,*- In(r,itl,)] . 

ri‘-- Rt' 

The solutions become simple near the rigid walls, when ]I- r/Ri j<i, 

02 zz (- 1)‘+1 a 1(*-1)* a, = 2_4* + (y- u’+’ 2’ i=1,2 (10) 

The constants a,and a, must obviously be positive. The first equation of (2) is used 
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to find p = p(r). Integrating the second equation of (2) under the condition that srCr :~: (rrV 

(see Eqs.(4)), we obtain the distribution of tangential stresses in regions 1 and 2 

c- $r- --T .R.21r2, i = 1, 2 WL L (11) 

where Li is the modulus of tangential stress at the wall. 

The third equation of (4), within the approximation used, has the form 

(JY, = (!.@ + PO)'@ (12) 

Equating the right-hand sides of Eqs.(ll) and (12) we obtain equations for determining 

0 (I^) in the boundary regions 

(13) 

Integrating Eqs.(13) in which 8' is given by (lo), we obtain the velocityprofiles v = or 

in regions 1 and 2 

Here B, and B, are the constants of integration of (13) determined, respectively, from 

the boundary conditions o (R,)=w,,o(R,)=O: 

IIlcc~ 
BI=~I---K, (al_ll)a 

1 [_.__- 
(a1 - I)* +-q 2@1---) (15) 

Bz=--K, &+f---- L 
1 

(ar + l? +A] 
2 (Q + 1) 

The product f~16' in (12) characterizes the viscous properties of the turbulent fluid 

governed by its vortex structure, therefore the quantity ~10' can be regardedastheturbulent 
viscosity. Then we shall have to regard the constant p,,, irrespective of the inclination 
of the boundary vortices, as the molecular viscosity. If we assume, as was done in thetheory 
of boundary turbulence /ll/, that p,, = 0, then for ai = 0 Eqs.(14) will yield the follow- 
ing velocity profiles in regions 1 and 2: 

(46) 

When ai=o, formulas (15) become meaningless and we must either formulate different 

boundary conditions for determining the constants B, and B, or regard the constants B, and 

B, are empirical. 

If we regard the kernel of the flow rl < 7 Q rz as a region of free turbulence with 
constant turbulent viscosity, then in this case the velocity profile will have the form /ll/ 

v = Mr f Nir (17) 
where M and i? are constants independent of the turbulent viscosity and determined from the 
condition that the velocity is continuous at r = rr and r = r2. 

Below we compare the values at velocity u given by formulas (16) and (17) with the 
experimental values of velocity given in /lo/, in the form of a table (the fluid in question 

is air, and the radii of the cylinders are H1 = 106 mm and R4 =155mm: 

~-RI, mm 1 
o,=178 set-l 

3 5 10 25 40 45 47 

u,m/sec.calc.10.15 9.08 8.69 8.29 7.47 6.83 6.66 6.45 
experimental 10.13 Y.10 8.70 8.24 7.56 6.90 6.67 6.50 
01=283 set-l 
u,m/sec.calc. 16.10 14.61 14.08 13.44 11.96 10.80 10.51 10.12 
experimental 16.05 14.60 14.05 13.27 11.95 10.87 10.50 10.10 

Calculations using formulas (16) and (17) were carried out for the following values of 
the parameters: B, = 59.6 set, BP = 49.7 set, K, = il.0 set, KS = 2.71 set, M= 4.58 set, and 
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N= 0.90 m2/sec for WI = 178 set, and B1= 100 set, B, = 79.3 see, K, = 15.7 set, K, = 4.71 set, 

M = 2.17 set and N= 1.53m3/sec for o1 = 283 sec. In both cases we adopted the value r,- 
RI== R,--rr,= 7mm. The computed and experimental data show good agreement with each other. 

It was also found in /lo/ that the values of the dimensionless velocity ii = ~lo,R, can be 
found, for any ol, on a single graph B= S(5), where 5 = (r - R,)/(R, - R,). We shall show that 
the results of this paper also agree with this conclusion. 

Let us write Bi and Ki in the form 

Bi = bitit, Ki = XiOl (13) 

where fii and xi (i= i,2) are dimensionless quantities. 
Using the dimensionless quantities ii and 5, we rewrite Eqs.(16) as follows: 

(19) 

f = B2 (1 + SW +x2 (I+ Sh) In 

h = (R, -RJR, 

(+$+(I+++ g--g, )] 

The values of fli and xi, obtained using the values of Bi and Ki, ,givenabove,are given in 
the table. The quantities & andxi, canobviously be regarded as constants, and in this case 
Eqs.(19) will represent the functions F= c(E) independent of o1 

Since the constants M,N in Eq.(17) can be expressed in terms of Bi and Ki inalinear 
manner, it follows that formula (17) written in terms of 5 and 5, also represents the function 
F = a (5) independent of wl. But in this case v is independent of o1 over the whole of the 
segment RI <r<R,. 
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